

Fig. 30. Fit input shaft ball bearing

To renew input shaft needle roller bearing (41, Fig. 2)

The old bearing should be pressed out of the hypoid casing using RG369.

The hypoid casing must be heated as previously described.

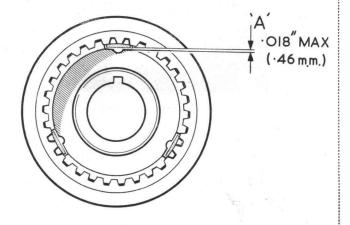



Fig. 31. Fit needle bearing

The marked end of the new bearing must face outwards on the hypoid side of the casing, and must be pressed in from this side, using the special mandrel (Tool No.RG369). (See Fig. 31.)

To re-assemble synchro hub assemblies (See Fig. 3)

Carefully stone off any burrs from the hub in the cut outs which locate the shifting plates. Temporarily assemble the synchro hub, sleeve and shifting plates with their flat face to hub. With a feeler gauge, check the radial clearance between the hub and each shifting plate, see Fig. 31A, ensuring that the gauge spans the semi-circular groove in the hub. This clearance must not exceed .018 in. (.46 mm) otherwise the shifting plates may tilt and jam.

9055

Fig. 31A. Checking shifting plate clearance

Place the hub flat and insert the three springs with the caps into the three holes in the hub.

Carefully place the hub into the sliding sleeve, until restrained by the three caps.

Push each cap into its bore, against the pressure of the spring until located under the sliding sleeve.

Hold the assembly on its edge and position the sleeve, so that the holes in the plates are just exposed to receive the balls, and the caps in the hubs are half visible through the holes in the shifting plates.

Place a ball in one plate. Using a small screwdriver, depress the ball and push the plate and ball under the sleeve.

Do not change the position of the hub.

Repeat with the remaining two balls.

Carefully push in the hub until the balls locate in groove in the sliding sleeve.